10/17/23, 2:00 PM

Sharelatex Example

ESE 345 Computer Architecture Project

Pipelined SIMD multimedia unit design with the VHDL/Verilog hardware description

language

1 Introduction

Purpose: To learn a use of VHDL/Verilog hardware description language and modern CAD tools
for the structural and behavioral design of a four-stage pipelined multimedia unit with a reduced
set of multimedia instructions similar to those in the Sony Cell SPU and Intel SSE architectures.

CAD Tools: Mentor Graphics Modelsim at the Undergraduate CAD Lab (room 281 Light Eng.

Bldg.) or any other VHDL/Verilog simulator (e.g. Aldec, Vivado).

It is a one/two-students project.

Tx128-
il
e
P
Wil
Brgraess
g

Siage 2.
Descoacder &
Reraacd
Oeprmds

HVEX
Ry

E

TesEwericH -t Fowr-Stage Paoined Mubimeda Lint

2 Procedure

https://www.ece.stonybrook.edu/~midor/ESE345/project.html

1712

10/17/23, 2:00 PM Sharelatex Example

—

It is suggested to read Chapter 3.6-3.8 on subword parallelism to understand the concept of
multimedia processing introduced as the MMX architecture for Intel processors in the 1990s.

2. Refresh your knowledge of VHDL/Verilog in the HDL design of digital circuits by reading Chapter 4.14
(Verilog) and this VHDL tutorial.

3. Part 1. Develop and submit behavioral HDL code and its verification results for all

multimedia ALU operations at the 3rd stage. (No knowledge of pipelining & forwarding is
expected/used at that step.

4. Develop the HDL model of the four-stage multimedia unit and its modules. As an example,
look how the Verilog code is used to describe the operation of the S-stage MIPS pipeline.

5. Verify individual modules of your design with their testbenches before instantiating them in
higher order modules. Verify the final model with a testbench module and generate file
Results showing the status of each stage of the unit during execution.

https://www.ece.stonybrook.edu/~midor/ESE345/project.html 2/12

https://www.ece.stonybrook.edu/~midor/ESE345/vhdl-tutorial.pdf
https://www.ece.stonybrook.edu/~midor/ESE345/Using%20a%20Verilog%20HDL%20to%20Describe%20and%20Model%20a%20Pipeline.pdf

10/17/23, 2:00 PM Sharelatex Example

3 Requirements

The complete 4-stage pipelined design is to be developed in a structural/RTL manner with several
modules operating simultaneously. Each module represents a pipelined stage with its interstage
register. The major units inside those stages modules are described below.

1. Multimedia ALU
Takes up to three inputs from the Register File, and calculates the result based on the current
instruction to be performed.
The ALU must be implemented as behavioral model in VHDL or continuous
assignment (dataflow models in Verilog).

2. Register File
The register file has 32 128-bit registers. On any cycle, there can be 3 reads and 1 write. When
executing instructions, each cycle two/three 128-bit register values are read, and one 128-bit
result can be written if a write signal is valid. This register write signal must be explicitly
declared so it can be checked during simulation and demonstration of your design. Theregister
modulemustbeimplementedasa behavioral model in VHDL (dataflow/RTL model
in Verilog).

3. Instruction Buffer
The instruction buffer can store 64 25-bit instructions. The contents of the buffer should be
loaded by the testbench instructions from a test file at the start of simulation. On each cycle, the
instruction specified by the Program Counter (PC) is fetched, and the value of PC is
incremented by 1.
The Instruction Buffer module must be implemented as a behavioral model in VHDL
(dataflow/RTL model in Verilog).

4. Forwarding Unit

Every instruction must use the most recent value of a register, even if this value has not
yet been written to the Register File. Be mindful of the ordering of instructions; the most
recent value should be used, in the event of two consecutive writes to a register, followed by a
read from that same register. Your processor should never stall in the event ofhazards.

Take extra care of which instructions require forwarding, and which ones do not. Namely,
NOP and the instructions with Immediate fields do not contain one/two registersources. Only
valid data and source/destination registers should be considered for forwarding.

5. Four-Stage Pipelined Multimedia Unit
Clock edge-sensitive pipeline registers separate the IF, ID, EXE, and WB stages. Data
should be written to the Register File after the WB Stage.
All instructions (including li) take four cycles to complete. This pipeline must be
implemented as a structural model with modules for each corresponding pipeline stages and
their interstage registers. Four instructions can be at different stages of the pipeline at every
cycle.

6. Testbench This module loads the instruction buffer using data loaded from a file, begins
simulation, and upon completion, compares the contents of the register file to a
file containing the expected results. This expected results file does not need to be auto-generated.
Instead, this can be manually entered when designing a test program.

This must be implemented as a behavioral model.

7. Assembler This is a separate program written in any language your team prefers (i.e. Java,
C++, Python). Its purpose is to convert an assembly file to the binary format for the
Instruction Buffer. This assembler does not need to be robust, and can assume very specific
syntax rules that you as a team decide.

https://www.ece.stonybrook.edu/~midor/ESE345/project.html

4/12

10/17/23, 2:00 PM Sharelatex Example

8. Results File This file must show the status of the pipeline for each cycle during program
execution. It should include the opcodes, input operand, and results of the execution of
instructions, as well as all relevant control signals and forwarding information. This should be
carried out by your testbench.

4 Instruction Formats and Opcode Description

4.1 Load Immediate

24 23 21 20 s a 0
|u| Loadindexl 16-bit immediate | rd |

li: Load a 16-bit Immediate value from the [20:5] instruction field into the 16-bit field specified by
the Load Index field [23:21] of the 128-bit register rd. Other fields of register rd are not changed.
Note that a LI instruction first reads register rd and then (after inserting an immediate value into
one of its fields) writes it back to register rd, i.e., register rd is both a source and destination register
of the LI instruction!

4.2 Multiply-Add and Multiply-Subtract R4-Instruction Format

24 23 22 21 20 19 1514 10 9 5 4]
|1 | D| Long/Int Subtract/add High,."low| rs3 | rs2 | rsi | rd |

Signed operations are performed with saturated rounding that takes the result, and sets a floor and
ceiling corresponding to the max range for that data size. This means that instead of over/underflow
wrapping, the max/min values are used.

Size (Num Bits) | Min Max
Long (64) 263 | 1963 _

Int (32) _231 +231 -1

The tables below show the description for each operation:

https://www.ece.stonybrook.edu/~midor/ESE345/project.html 5/12

10/17/23, 2:00 PM

Sharelatex Example

LI/SA/HL
[22:20]

Description of Instruction Code

000

Signed Integer Multiply-Add Low with Saturation: Multiply low 16-bit-fields of each 32-bit
field of registers rs3 and rs2, then add 32-bit products to 32-bit fields of
register rs1, and save result in register rd

001

Signed Integer Multiply-Add High with Saturation: Multiply high 16-bit-fields of each 32-
bit field of registers rs3 and rs2, then add 32-bit products to 32-bit fields of
register rs1, and save result in register rd

010

Signed Integer Multiply-Subtract Low with Saturation: Multiply low 16-bit-fields of each 32-
bit field of registers rs3 and rs2, then subtract 32-bit products from 32-bit
fields of register rs1, and save result in register rd

011

Signed Integer Multiply-Subtract High with Saturation: Multiply high 16-bit- fields of each
32-bit field of registers rs3 and rs2, then subtract 32-bit products from
32-bit fields of register rs1, and save result in register rd

100

Signed Long Integer Multiply-Add Low with Saturation: Multiply low 32-bit- fields of each
64-bit field of registers rs3 and rs2, then add 64-bit products to 64-bit fields
of register rs1, and save result in register rd

101

Signed Long Integer Multiply-Add High with Saturation: Multiply high 32-bit- fields of each
64-bit field of registers rs3 and rs2, then add 64-bit products to 64-bit fields
of register rsl, and save result in register rd

110

Signed Long Integer Multiply-Subtract Low with Saturation: Multiply low 32- bit-fields of
each 64-bit field of registers rs3 and rs2, then subtract 64-bit products from
64-bit fields of register rsl, and save result in register rd

111

Signed Long Integer Multiply-Subtract High with Saturation: Multiply high 32- bit-fields of
each 64-bit field of registers rs3 and rs2, then subtract 64-bit products from
64-bit fields of register rs1, and save result in register rd

4.3 R3-Instruction Format

24 23 22

1514 10 9 5 4 0

1|1

opcode rs2 rsl rd

In the table below, 16-bit signed integer add (AHS), subtract (SFHS), and multiply by sign (MLHSS)
operations are performed with saturation to signed halfword rounding that takes a 16-bit signed integer X,
and converts it to -32768 (the most negative 16-bit signed value) if it is less than -32768, to +32767 (the
highest positive 16-bit signed value) if it is greater than 32767, and leaves it unchanged otherwise.

https://www.ece.stonybrook.edu/~midor/ESE345/project.html

712

10/17/23, 2:00 PM

Sharelatex Example

Opcode [22:15]

Description of Instruction Opcode

xxxx0000

NOP: no operation. Make sure that a NOP instruction does not write anything to the register file!

xxxx0001

SHRHI: shift right halfword immediate: packed 16-bit halfword shift right logical of the contents of
register rsI by the value of the 4 least signfiicant bits of instruction field rs2. Each of the results is placed
into the corresponding 16-bit slot in register rd. Bits shifted out for each halfword are dropped, and bits
shifted in to each halfword should be zeros. (Comments: 8 separate 16-bit values in each 128-bit
register)

xxxx0010

AU: add word unsigned: packed 32-bit unsigned addition of the contents of registers rsI and rs2
(Comments: 4 separate 32-bit values in each 128-bit register)

xxxx0011

CNTI1H: count 1s in halfword: count 1s in each packed 16-bit halfword of the contents of register
rsl. The results are placed into corresponding slots in register rd. (Comments: 8 separate 16-bit
values in each 128-bit register)

xxxx0100

of registers rs1 and rs2 . (Comments: 8 separate 16-bit values in each 128-bit register)

AHS: add halfword saturated: packed 16-bit halfword signed addition with saturation of the contents

xxxx0101

OR: bitwise logical or of the contents of registers rsI and rs2

xxxx0110

BCW: broadcast word: broadcast the rightmost 32-bit word of register rs1 to each of the
four 32-bit words of register rd

xxxx0111

MAXWS: max signed word: for each of the four 32-bit word slots, place the maximum signed value
between rsl and rs2 in register rd. (Comments: 4 separate 32-bit values in each128-bit register)

xxx01000

MINWS: min signed word: for each of the four 32-bit word slots, place the minimum signed value
between rsl and rs2 in register rd . (Comments: 4 separate 32-bit values in each 128-bit register)

xxxx1001

MLHU: multiply low unsigned: the 16 rightmost bits of each of the four 32-bit slots in register rs1 are
multiplied by the 16 rightmost bits of the corresponding 32-bit slots in register rs2, treating both
operands as unsigned. The four 32-bit products are placed into the corresponding slots of register rd .
(Comments: 4 separate 32-bit values in each 128-bit register)

xxxx1010

MLHSS: multiply by sign saturated: each of the eight signed 16-bit halfword values in register rs/
is multiplied by the sign of the corresponding signed 16-bit halfword value in register rs2 with
saturation, and the result placed in register rd. If a value in a 16-bit register rs2 field is zero, the
corresponding 16-bit field in rd will also be zero. (Comments: 8 separate 16-bit values in each 128-
bit register)

xxxx1011

AND: bitwise logical and of the contents of registers rsI and rs2

xxxx1100

INVB: invert (flip) bits of the contents of register rsl. T he result is placed in register rd.

xxxx1101

ROTW: rotate bits in word : the contents of each 32-bit field in register rsl arerotated to the right
according to the value of the 5 least significant bits of the corresponding 32-bit field in register rs2. The
results are placed in register rd. Bits rotated out of the right end of each word are rotated in on the left
end of the same 32-bit word field. (Comments: 4 separate 32-bit word values in each 128-bit register)

xxxx1110

SFWU: subtract from word unsigned: packed 32-bit word unsigned subtract of the contentsof rs1
from rs2 (rd =rs2 - rs1). (Comments: 4 separate 32-bit values in each 128-bit register)

xxxx1111

SFHS: subtract from halfword saturated: packed 16-bit halfword signed subtraction with saturation
of the contents of rsI from rs2 (rd = rs2 - rs1). (Comments: 8 separate 16-bit values in each 128-bit
register)

https://www.ece.stonybrook.edu/~midor/ESE345/project.html

9/12

10/17/23, 2:00 PM Sharelatex Example

5 Expected Results

https://www.ece.stonybrook.edu/~midor/ESE345/project.html 11/12

10/17/23, 2:00 PM Sharelatex Example
Part 1 (Step 3 of the Procedure): VHDL source code and its verification results for all

multimedia ALU functions at the 3" (Execute) pipeline stage after forwarding. The electronic
version of the Part 1 report must be emailed to TA and Instructor.

Deadline: Project Part 1 (VHDL ALU functions): 11:59 PM Oct. 29, 2023 by email to
TA Ramisa Fatima and Instructor

Part 2. Full project submission
A full project report must include the goals, multimedia unit block diagram, design procedure, all

testbenches, conclusions, the VHDL/Verilog source code of the multimedia unit, and simulation
results (both waveforms and results file).

In the report, show the execution of all instructions. Show the instruction progress with four different
instructions occupying the four stages of the pipeline. Also, show the implementation of data forwarding!

Full Project Submission Deadline: The electronic version of the complete report must be
submitted no later than 1:00 PM Dec. 3, 2023 by email to TA Ramisa Fatima and Instructor.

Each team will need to request a time slot from TA Masayuki Hijikata and to give a project
presentation, namely, to demonstrate operations of all instructions, pipelining, and data forwarding
(no slides required) using your own computer during Dec. 4 - 7, 2023.

https://www.ece.stonybrook.edu/~midor/ESE345/project.html 12/12

